Two-periodic Aztec diamond

Arno Kuijlaars (KU Leuven)

joint work with
Maurice Duits (KTH Stockholm)

Optimal and Random Point Configurations
ICERM, Providence, RI, U.S.A., 27 February 2018

Outline

1. Aztec diamond
2. The model and main result
3. Non-intersecting paths
4. Matrix Valued Orthogonal Polynomials (MVOP)
5. Analysis of RH problem
6. Saddle point analysis
7. Periodic tilings of a hexagon
8. Aztec diamond

Aztec diamond

North

West

South

Tiling of an Aztec diamond

- Tiling with 2×1 and 1×2 rectangles (dominos)
- Four types of dominos

Large random tiling

Deterministic pattern near corners
Solid region or
Frozen region

Disorder in the middle Liquid region

Boundary curve Arctic circle

Recent development

- Two-periodic weighting Chhita, Johansson (2016) Beffara, Chhita, Johansson (2018 to appear)

Two-periodic weights

- A new phase within the liquid region: gas region

Phase diagram

2. The model and main result

Weight $\quad w(T)$ of a tiling T is the product of the weights of dominos

Partition function

$$
Z_{N}=\sum_{T} w(T)
$$

Probability for T

$$
\operatorname{Prob}(T)=\frac{w(T)}{Z_{N}}
$$

Aztec diamond of size 2 N

Equivalent weights

Since North dominos have weight 1, we can transfer the weights to non-intersecting paths.

> Particles along diagonal lines are interlacing
Positions of particles are random in the two-periodic Aztec diamond. Structure of determinantal point process

- We found explicit formula for kernel K_{N} using matrix valued orthogonal polynomials (MVOP).

Coordinates

Formula for correlation kernel

THEOREM 1 Assume N is even and $m+n$ and $m^{\prime}+n^{\prime}$ are even.

$$
\begin{array}{r}
\left(\begin{array}{cc}
K_{N}\left(m, n ; m^{\prime}, n^{\prime}\right) & K_{N}\left(m, n+1 ; m^{\prime}, n^{\prime}\right) \\
K_{N}\left(m, n ; m^{\prime}, n^{\prime}+1\right) & K_{N}\left(m, n+1 ; m^{\prime}, n^{\prime}+1\right)
\end{array}\right) \\
=-\frac{\chi_{m>m^{\prime}}}{2 \pi i} \oint_{\gamma_{0,1}} A^{m-m^{\prime}}(z) z^{\frac{m^{\prime}-m+n^{\prime}-n}{2}} \frac{d z}{z}+
\end{array}
$$

$\frac{1}{(2 \pi i)^{2}} \oint_{\gamma_{0,1}} \frac{d z}{z} \oint_{\gamma_{1}} \frac{d w}{z-w} \frac{z^{\frac{N-m-n}{2}}(z-1)^{N}}{w^{\frac{N-m^{\prime}-n^{\prime}}{2}}(w-1)^{N}} A^{N-m^{\prime}}(w) F(w) A^{-N+m}(z)$
where
$A(z)=\frac{1}{z-1}\left(\begin{array}{cc}2 \alpha z & \alpha(z+1) \\ \beta z(z+1) & 2 \beta z\end{array}\right)$
$F(z)=\frac{1}{2} I_{2}+\frac{1}{2 \sqrt{z\left(z+\alpha^{2}\right)\left(z+\beta^{2}\right)}}\left(\begin{array}{cc}(\alpha-\beta) z & \alpha(z+1) \\ \beta z(z+1) & -(\alpha-\beta) z\end{array}\right)$
3. Non-intersecting paths

Line segments on
West, East and South dominos

North

West

South

Double Aztec diamond

Non-intersecting paths on a graph
Paths are transformed to fit on a graph

Weights on the graph

Weights on non-intersecting paths

Any tiling of double Aztec diamond is equivalent to system $\left(P_{0}, \ldots, P_{2 N-1}\right)$ of $2 N$ non-intersecting paths

- P_{j} is path on the graph from $(0, j)$ to $(2 N, j)$,
- P_{i} is vertex disjoint from P_{j} if $i \neq j$.

There are $2 N+1$ levels, $0,1, \ldots, 2 N$.

- Transition from level m to level $m^{\prime}>m$

$$
T_{m, m^{\prime}}(x, y)=\sum_{P:(m, x) \rightarrow\left(m^{\prime}, y\right)} w(P), \quad x, y \in \mathbb{Z}
$$

Transitions and LGV theorem

There are $2 N+1$ levels, $0,1, \ldots, 2 N$.

- Transition from level m to level $m^{\prime}>m$

$$
T_{m, m^{\prime}}(x, y)=\sum_{P:(m, x) \rightarrow\left(m^{\prime}, y\right)} w(P), \quad x, y \in \mathbb{Z}
$$

Lindström-Gessel-Viennot theorem

Probability that paths at level m are at positions $x_{0}^{(m)}<x_{1}^{(m)}<\cdots<x_{2 N-1}^{(m)}$:

$$
\frac{1}{Z_{N}} \operatorname{det}\left[T_{0, m}\left(i, x_{k}^{(m)}\right)\right]_{i, k=0}^{2 N-1} \cdot \operatorname{det}\left[T_{m, 2 N}\left(x_{k}^{(m)}, j\right)\right]_{k, j=0}^{2 N-1}
$$

Determinantal point process

Corollary: The positions at level m are determinantal with kernel

$$
K_{N, m}(x, y)=\sum_{i, j=0}^{2 N-1} T_{0, m}(i, x)\left[G^{-t}\right]_{i, j} T_{m, 2 N}(y, j)
$$

where $\quad G=\left[T_{0,2 N}(i, j)\right]_{i, j=0}^{2 N-1}$

- Multi-level extension is known as Eynard-Mehta theorem.

Block Toeplitz matrices

In our case: Transition matrices are 2 periodic

$$
T(x+2, y+2)=T(x, y)
$$

- Block Toeplitz matrices, infinite in both directions, with block symbol $\quad A(z)=\sum_{j=-\infty}^{\infty} B_{j} z^{j}$

$$
\text { if } T=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & \\
\ddots & B_{0} & B_{1} & \ddots & \\
\ddots & B_{-1} & B_{0} & B_{1} & \ddots \\
& \ddots & B_{-1} & B_{0} & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Double contour integral formula

THEOREM 2: Suppose transition matrices are 2-periodic. Then

$$
\begin{aligned}
& \left(\begin{array}{cc}
K_{N, m}(2 x, 2 y) & K_{N, m}(2 x+1,2 y) \\
K_{N, m}(2 x, 2 y+1) & K_{N, m}(2 x+1,2 y+1)
\end{array}\right) \\
& =\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma} A_{m, 2 N}(w) R_{N}(w, z) A_{0, m}(z) \frac{w^{y}}{z^{x+1} w^{N}} d z d w
\end{aligned}
$$

- $A_{m, 2 N}$ and $A_{0, m}$ are block symbols for the transition matrices $T_{m, 2 N}$ and $T_{0, m}$.
- $R_{N}(w, z)$ is a reproducing kernel for matrix valued polynomials.

4. Matrix Valued Orthogonal Polynomials (MVOP)

- Matrix valued polynomial of degree j,

$$
P_{j}(z)=\sum_{i=0}^{j} C_{i} z^{i}
$$

each C_{i} is $d \times d$ matrix, $\operatorname{det} C_{j} \neq 0$

- $W(z)$ is $d \times d$ matrix valued weight
- Orthogonality

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{j}(z) W(z) P_{k}^{t}(z) d z=H_{j} \delta_{j, k}
$$

$$
R_{N}(w, z)=\sum_{j=0}^{N-1} P_{j}^{t}(w) H_{j}^{-1} P_{j}(z)
$$

is reproducing kernel for matrix polynomials of degree
$\leq N-1$

- If Q has degree $\leq N-1$, then

$$
\frac{1}{2 \pi i} \oint_{\gamma} Q(w) W(w) R_{N}(w, z) d w=Q(z)
$$

- There is a Christoffel-Darboux formula for R_{N} and a Riemann Hilbert problem
$Y: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{2 d \times 2 d}$ satisfies
- Y is analytic,
- $Y_{+}=Y_{-}\left(\begin{array}{ll}I_{d} & W \\ 0_{d} & I_{d}\end{array}\right)$ on γ,
- $Y(z)=\left(I_{2 d}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}z^{N} l_{d} & 0_{d} \\ 0_{d} & z^{-N} l_{d}\end{array}\right)$ as $z \rightarrow \infty$.

Grünbaum, de la Iglesia, Martínez-Finkelshtein (2011)

Solution of RH problem

Unique solution (provided P_{N} uniquely exists) is

$$
Y(z)=\left(\begin{array}{cc}
P_{N}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{P_{N}(s) W(s)}{s-z} d s \\
Q_{N-1}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{Q_{N-1}(s) W(s)}{s-z} d s
\end{array}\right)
$$

where P_{N} is monic MVOP of degree N and $Q_{N-1}=-H_{N-1}^{-1} P_{N-1}$ has degree $N-1$

Solution of RH problem

Unique solution (provided P_{N} uniquely exists) is

$$
Y(z)=\left(\begin{array}{cc}
P_{N}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{P_{N}(s) W(s)}{s-z} d s \\
Q_{N-1}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{Q_{N-1}(s) W(s)}{s-z} d s
\end{array}\right)
$$

where P_{N} is monic MVOP of degree N and $Q_{N-1}=-H_{N-1}^{-1} P_{N-1}$ has degree $N-1$

Christoffel Darboux formula

$$
R_{N}(w, z)=\frac{1}{z-w}\left(\begin{array}{ll}
0_{d} & I_{d}
\end{array}\right) Y^{-1}(w) Y(z)\binom{I_{d}}{0_{d}}
$$

Delvaux (2010)

Our case of interest

- Weight matrix in special case of two periodic Aztec diamond is $W^{N}(z)$, with

$$
W(z)=\frac{1}{(z-1)^{2}}\left(\begin{array}{cc}
(z+1)^{2}+4 \alpha^{2} z & 2 \alpha(\alpha+\beta)(z+1) \\
2 \beta(\alpha+\beta) z(z+1) & (z+1)^{2}+4 \beta^{2} z
\end{array}\right)
$$

No symmetry in W. Existence and uniqueness of MVOP are not immediate.

Our case of interest

- Weight matrix in special case of two periodic Aztec diamond is $W^{N}(z)$, with

$$
W(z)=\frac{1}{(z-1)^{2}}\left(\begin{array}{cc}
(z+1)^{2}+4 \alpha^{2} z & 2 \alpha(\alpha+\beta)(z+1) \\
2 \beta(\alpha+\beta) z(z+1) & (z+1)^{2}+4 \beta^{2} z
\end{array}\right)
$$

No symmetry in W. Existence and uniqueness of MVOP are not immediate.

Scalar valued analogue

- Weight $\left(\frac{z+1}{z-1}\right)^{N}$ on circle around $z=1$ and OPs are Jacobi polynomials $P_{j}^{(-N, N)}(z)$ with nonstandard parameters

5. Analysis of RH problem

Steepest descent analysis of RH problem leads to explicit formula

- RH problem is solved in terms of contour integrals.
- For example: MVOP is

$$
P_{N}(z)=(z-1)^{N} W_{\infty}^{N / 2} W^{-N / 2}(z), \quad \text { if } N \text { is even. }
$$

Steepest descent analysis of RH problem leads to explicit formula

- RH problem is solved in terms of contour integrals.
- For example: MVOP is

$$
P_{N}(z)=(z-1)^{N} W_{\infty}^{N / 2} W^{-N / 2}(z), \quad \text { if } N \text { is even. }
$$

It leads to proof of THEOREM 1

6. Saddle point analysis

Asymptotic analysis

Saddle point analysis on the double contour integral
$\frac{1}{(2 \pi i)^{2}} \oint_{\gamma_{0,1}} \frac{d z}{z} \oint_{\gamma_{1}} \frac{d w}{z-w} \frac{z^{\frac{N-2 x}{2}}(z-1)^{N}}{w^{\frac{N-2 y}{2}}(w-1)^{N}} A^{N-m}(w) F(w) A^{-N+m}(z)$
when $N \rightarrow \infty$

- m, x, y scale with N in such a way that

$$
m \approx\left(1+\xi_{1}\right) N, \quad x, y \approx\left(1+\frac{\xi_{1}+\xi_{2}}{2}\right) N
$$

- Saddle points are critical points of

$$
2 \log (z-1)-\left(1+\xi_{2}\right) \log z+\xi_{1} \log \lambda(z)
$$

where $\lambda(z)$ is an eigenvalue of $W(z)=\frac{A^{2}(z)}{z}$.

Saddle point analysis

Let $-1<\xi_{1}, \xi_{2}<1$. There are always four saddle points, depending on ξ_{1}, ξ_{2}, and they lie on the Riemann surface for

$$
y^{2}=z\left(z+\alpha^{2}\right)\left(z+\beta^{2}\right) \quad \text { (genus one) }
$$

with branch points $-\alpha^{2}<-\beta^{2}<0$ and infinity.

- At least two saddles are in $z \in\left[-\alpha^{2},-\beta^{2}\right]$.

Classification of phases

Location of other two saddles determines the phase.

- Two saddles are in $[0, \infty)$: solid phase
- Two saddles are in $\mathbb{C} \backslash\left(\left[-\alpha^{2},-\beta^{2}\right] \cup[0, \infty)\right)$: liquid phase
- All four saddles are in $\left[-\alpha^{2},-\beta^{2}\right]$: gas phase

Transitions between phases occur when saddles coalesce.

Phase diagram

7. Periodic tilings of a hexagon

- Lozenge tiling of a regular hexagon
- Also admits a non-intersecting path formulation

Large random tiling

Two periodic tiling of a hexagon

- Ongoing work with

Charlier, Duits, and Lenells

Thank you for your attention

