Two-periodic Aztec diamond

Arno Kuijlaars (KU Leuven) joint work with Maurice Duits (KTH Stockholm)

Optimal and Random Point Configurations ICERM, Providence, RI, U.S.A., 27 February 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

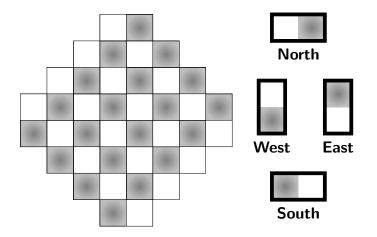
Outline

- 1. Aztec diamond
- 2. The model and main result
- 3. Non-intersecting paths
- 4. Matrix Valued Orthogonal Polynomials (MVOP)

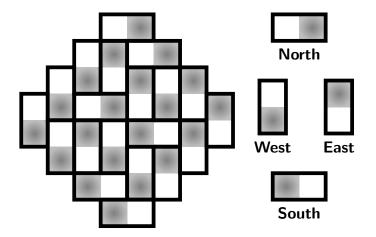
- 5. Analysis of RH problem
- 6. Saddle point analysis
- 7. Periodic tilings of a hexagon

1. Aztec diamond

Aztec diamond



Tiling of an Aztec diamond

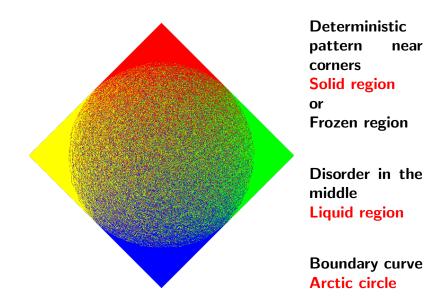


• Tiling with 2×1 and 1×2 rectangles (dominos)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

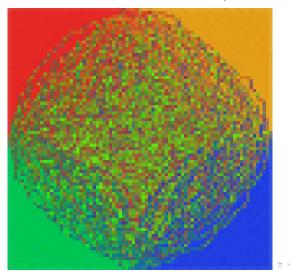
• Four types of dominos

Large random tiling



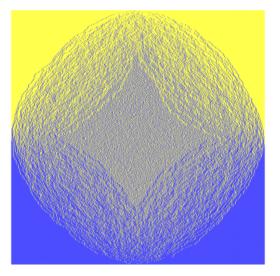
Recent development

• Two-periodic weighting Chhita, Johansson (2016) Beffara, Chhita, Johansson (2018 to appear)

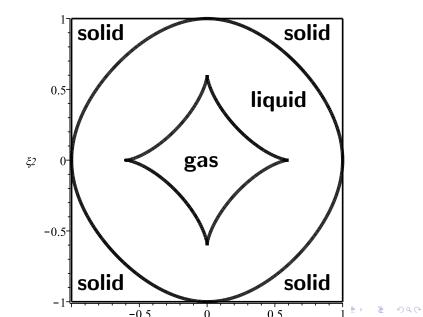


Two-periodic weights

• A new phase within the liquid region: gas region

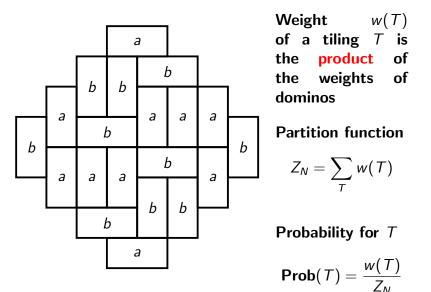


Phase diagram



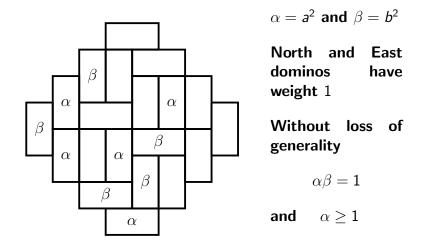
2. The model and main result

Two periodic weights



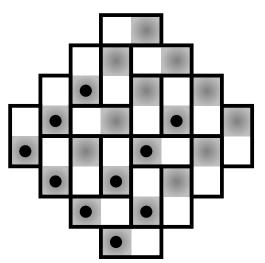
Aztec diamond of size 2N

Equivalent weights



Since North dominos have weight 1, we can transfer the weights to non-intersecting paths.

Particles in West and South dominos



Particles along diagonal lines are interlacing

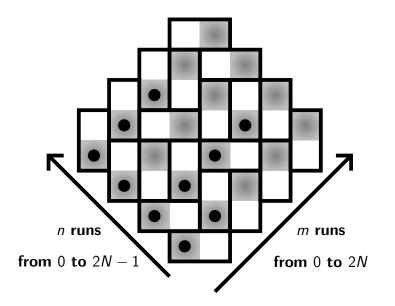
Positions of particles are random in the two-periodic Aztec diamond. Structure of determinantal point process

(日) (四) (三) (三)

э

• We found explicit formula for kernel K_N using matrix valued orthogonal polynomials (MVOP).

Coordinates



Formula for correlation kernel

THEOREM 1 Assume *N* is even and m + n and m' + n' are even.

$$\begin{pmatrix} K_{N}(m,n;m',n') & K_{N}(m,n+1;m',n') \\ K_{N}(m,n;m',n'+1) & K_{N}(m,n+1;m',n'+1) \end{pmatrix} \\ = -\frac{\chi_{m>m'}}{2\pi i} \oint_{\gamma_{0,1}} A^{m-m'}(z) z^{\frac{m'-m+n'-n}{2}} \frac{dz}{z} + \frac{1}{(2\pi i)^{2}} \oint_{\gamma_{0,1}} \frac{dz}{z} \oint_{\gamma_{1}} \frac{dw}{z-w} \frac{z^{\frac{N-m-n}{2}}(z-1)^{N}}{w^{\frac{N-m'-n'}{2}}(w-1)^{N}} A^{N-m'}(w) F(w) A^{-N+m}(z)$$

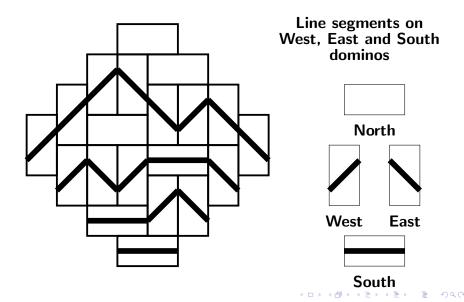
where

$$A(z) = \frac{1}{z - 1} \begin{pmatrix} 2\alpha z & \alpha(z + 1) \\ \beta z(z + 1) & 2\beta z \end{pmatrix}$$
$$F(z) = \frac{1}{2}I_2 + \frac{1}{2\sqrt{z(z + \alpha^2)(z + \beta^2)}} \begin{pmatrix} (\alpha - \beta)z & \alpha(z + 1) \\ \beta z(z + 1) & -(\alpha - \beta)z \end{pmatrix}$$

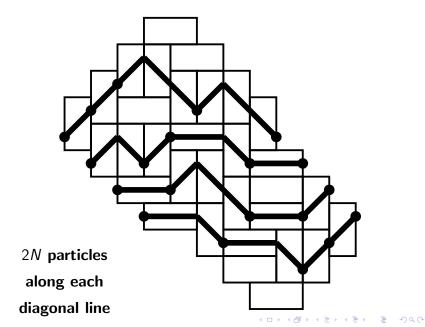
3. Non-intersecting paths

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Non-intersecting paths

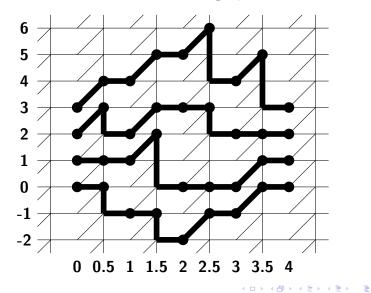


Double Aztec diamond

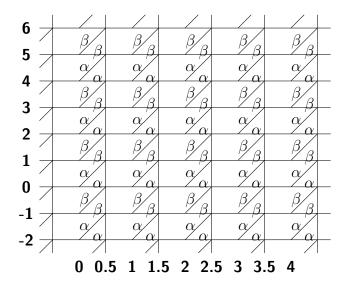


Non-intersecting paths on a graph

Paths are transformed to fit on a graph



Weights on the graph



Weights on non-intersecting paths

Any tiling of double Aztec diamond is equivalent to system (P_0, \ldots, P_{2N-1}) of 2N non-intersecting paths

• P_j is path on the graph from (0, j) to (2N, j),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• P_i is vertex disjoint from P_j if $i \neq j$.

Transitions and LGV theorem

There are 2N + 1 levels, 0, 1, ..., 2N.

• Transition from level m to level m' > m

$$T_{m,m'}(x,y) = \sum_{P:(m,x)\to(m',y)} w(P), \qquad x,y\in\mathbb{Z}$$

Transitions and LGV theorem

There are 2N + 1 levels, $0, 1, \ldots, 2N$.

• Transition from level m to level m' > m

$$T_{m,m'}(x,y) = \sum_{P:(m,x) \to (m',y)} w(P), \qquad x,y \in \mathbb{Z}$$

Lindström-Gessel-Viennot theorem

Probability that paths at level *m* are at positions $x_0^{(m)} < x_1^{(m)} < \cdots < x_{2N-1}^{(m)}$:

$$\frac{1}{Z_N} \det \left[T_{0,m}(i, x_k^{(m)}) \right]_{i,k=0}^{2N-1} \cdot \det \left[T_{m,2N}(x_k^{(m)}, j) \right]_{k,j=0}^{2N-1}$$

Lindström (1973) Gessel-Viennot (1985)

Determinantal point process

Corollary: The positions at level *m* are determinantal with kernel

$$K_{N,m}(x,y) = \sum_{i,j=0}^{2N-1} T_{0,m}(i,x) \left[G^{-t} \right]_{i,j} T_{m,2N}(y,j)$$

where $G = [T_{0,2N}(i,j)]_{i,j=0}^{2N-1}$

• Multi-level extension is known as Eynard-Mehta theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Block Toeplitz matrices

In our case: Transition matrices are 2 periodic

$$T(x+2,y+2)=T(x,y)$$

Block Toeplitz matrices, infinite in both directions, with block symbol $A(z) = \sum_{j=-\infty}^{\infty} B_j z^j$ $\mathbf{if} \ T = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & B_0 & B_1 & \ddots & \ddots \\ \ddots & B_{-1} & B_0 & B_1 & \ddots \\ & \ddots & B_{-1} & B_0 & \ddots \\ & & \ddots & \ddots & \ddots \end{pmatrix}$ ・ロト・西ト・田・王・ 日・

Double contour integral formula

THEOREM 2: Suppose transition matrices are 2-periodic. Then

$$\begin{pmatrix} K_{N,m}(2x,2y) & K_{N,m}(2x+1,2y) \\ K_{N,m}(2x,2y+1) & K_{N,m}(2x+1,2y+1) \end{pmatrix} \\ = \frac{1}{(2\pi i)^2} \oint_{\gamma} \oint_{\gamma} A_{m,2N}(w) R_N(w,z) A_{0,m}(z) \frac{w^y}{z^{x+1} w^N} dz dw$$

- $A_{m,2N}$ and $A_{0,m}$ are block symbols for the transition matrices $T_{m,2N}$ and $T_{0,m}$.
- $R_N(w, z)$ is a reproducing kernel for matrix valued polynomials.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4. Matrix Valued Orthogonal Polynomials (MVOP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MVOP

• Matrix valued polynomial of degree *j*,

$$P_j(z) = \sum_{i=0}^j C_i z^i$$

each C_i is $d \times d$ matrix, det $C_j \neq 0$

- W(z) is $d \times d$ matrix valued weight
- Orthogonality

$$\frac{1}{2\pi i} \oint_{\gamma} P_j(z) W(z) P_k^t(z) \, dz = H_j \delta_{j,k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Reproducing kernel

$$R_N(w,z) = \sum_{j=0}^{N-1} P_j^t(w) H_j^{-1} P_j(z)$$

is reproducing kernel for matrix polynomials of degree $\leq N-1$

• If Q has degree $\leq N - 1$, then

$$\frac{1}{2\pi i} \oint_{\gamma} Q(w) W(w) R_N(w,z) dw = Q(z)$$

• There is a Christoffel-Darboux formula for *R_N* and a Riemann Hilbert problem

Riemann-Hilbert problem

$$Y : \mathbb{C} \setminus \gamma \to \mathbb{C}^{2d \times 2d} \text{ satisfies}$$

• Y is analytic,
• $Y_+ = Y_- \begin{pmatrix} I_d & W \\ 0_d & I_d \end{pmatrix}$ on γ ,
• $Y(z) = (I_{2d} + O(z^{-1})) \begin{pmatrix} z^N I_d & 0_d \\ 0_d & z^{-N} I_d \end{pmatrix}$ as $z \to \infty$.

Grünbaum, de la Iglesia, Martínez-Finkelshtein (2011)

Solution of RH problem

Unique solution (provided P_N uniquely exists) is

$$Y(z) = \begin{pmatrix} P_N(z) & \frac{1}{2\pi i} \oint_{\gamma} \frac{P_N(s)W(s)}{s-z} ds \\ Q_{N-1}(z) & \frac{1}{2\pi i} \oint_{\gamma} \frac{Q_{N-1}(s)W(s)}{s-z} ds \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where P_N is monic MVOP of degree N and $Q_{N-1} = -H_{N-1}^{-1}P_{N-1}$ has degree N-1

Solution of RH problem

Unique solution (provided P_N uniquely exists) is

$$Y(z) = \begin{pmatrix} P_N(z) & \frac{1}{2\pi i} \oint_{\gamma} \frac{P_N(s)W(s)}{s-z} ds \\ Q_{N-1}(z) & \frac{1}{2\pi i} \oint_{\gamma} \frac{Q_{N-1}(s)W(s)}{s-z} ds \end{pmatrix}$$

where P_N is monic MVOP of degree N and $Q_{N-1} = -H_{N-1}^{-1}P_{N-1}$ has degree N-1

Christoffel Darboux formula

$$R_N(w,z) = \frac{1}{z-w} \begin{pmatrix} 0_d & I_d \end{pmatrix} Y^{-1}(w) Y(z) \begin{pmatrix} I_d \\ 0_d \end{pmatrix}$$

Delvaux (2010)

Our case of interest

• Weight matrix in special case of two periodic Aztec diamond is $W^N(z)$, with

$$W(z) = \frac{1}{(z-1)^2} \begin{pmatrix} (z+1)^2 + 4\alpha^2 z & 2\alpha(\alpha+\beta)(z+1) \\ 2\beta(\alpha+\beta)z(z+1) & (z+1)^2 + 4\beta^2 z \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

No symmetry in *W*. Existence and uniqueness of MVOP are not immediate.

Our case of interest

• Weight matrix in special case of two periodic Aztec diamond is $W^N(z)$, with

$$W(z) = \frac{1}{(z-1)^2} \begin{pmatrix} (z+1)^2 + 4\alpha^2 z & 2\alpha(\alpha+\beta)(z+1) \\ 2\beta(\alpha+\beta)z(z+1) & (z+1)^2 + 4\beta^2 z \end{pmatrix}$$

No symmetry in *W*. Existence and uniqueness of MVOP are not immediate.

Scalar valued analogue

• Weight $\left(\frac{z+1}{z-1}\right)^N$ on circle around z = 1 and OPs are Jacobi polynomials $P_j^{(-N,N)}(z)$ with nonstandard parameters

5. Analysis of RH problem

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Surprise

Steepest descent analysis of RH problem leads to explicit formula

- RH problem is solved in terms of contour integrals.
- For example: MVOP is

$$P_N(z) = (z-1)^N W_{\infty}^{N/2} W^{-N/2}(z),$$
 if N is even.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Surprise

Steepest descent analysis of RH problem leads to explicit formula

- RH problem is solved in terms of contour integrals.
- For example: MVOP is

$$P_N(z) = (z-1)^N W_{\infty}^{N/2} W^{-N/2}(z),$$
 if N is even.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It leads to proof of THEOREM 1

6. Saddle point analysis

Asymptotic analysis

Saddle point analysis on the double contour integral

$$\frac{1}{(2\pi i)^2} \oint_{\gamma_{0,1}} \frac{dz}{z} \oint_{\gamma_1} \frac{dw}{z-w} \frac{z^{\frac{N-2x}{2}}(z-1)^N}{w^{\frac{N-2y}{2}}(w-1)^N} A^{N-m}(w) F(w) A^{-N+m}(z)$$

when $N \to \infty$

• *m*, *x*, *y* scale with *N* in such a way that

 $m \approx (1+\xi_1)N, \qquad x,y \approx (1+\frac{\xi_1+\xi_2}{2})N$

Saddle points are critical points of

$$2\log(z-1)-(1+\xi_2)\log z+\xi_1\log\lambda(z)$$

where $\lambda(z)$ is an eigenvalue of $W(z) = \frac{A^2(z)}{z}$.

Saddle point analysis

Let $-1 < \xi_1, \xi_2 < 1$. There are always four saddle points, depending on ξ_1, ξ_2 , and they lie on the Riemann surface for

 $y^2 = z(z + \alpha^2)(z + \beta^2)$ (genus one)

with branch points $-\alpha^2 < -\beta^2 < 0$ and infinity.

• At least two saddles are in $z \in [-\alpha^2, -\beta^2]$.

Classification of phases

Location of other two saddles determines the phase.

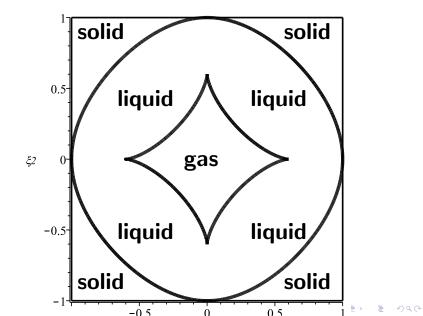
- Two saddles are in $[0,\infty)$: solid phase
- Two saddles are in C \ ([−α², −β²] ∪ [0,∞)): liquid phase

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• All four saddles are in $[-\alpha^2, -\beta^2]$: gas phase

Transitions between phases occur when saddles coalesce.

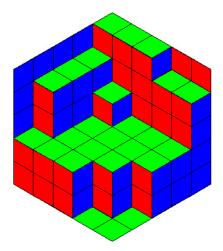
Phase diagram



7. Periodic tilings of a hexagon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

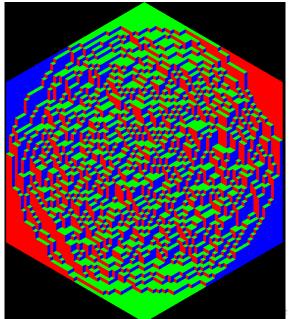
Tiling of a hexagon



- Lozenge tiling of a regular hexagon
- Also admits a non-intersecting path formulation

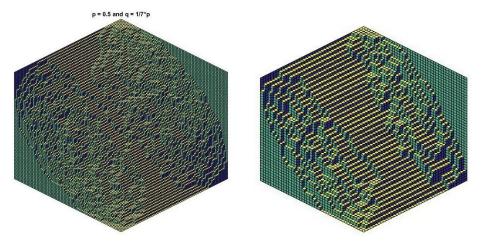
э

Large random tiling



▶ ৰ ≣ ► ≣ • **গ**৭৫

Two periodic tiling of a hexagon



 Ongoing work with Charlier, Duits, and Lenells

Thank you for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ